website statistics Penjumlahan dan Pengurangan Bentuk Akar

Penjumlahan dan Pengurangan Bentuk Akar


Masih ingatkah Anda dengan penjumlahan dan pengurangan pada bentuk aljabar? Untuk mengingat kembali tentang penjumlahan dan pengurangan bentuk aljabar, silahkan perhatikan contoh soal berikut.
3p + 5p      = (3 + 5)p = 8p
7z – 3z       = (7 – 3)z   = 4z

Bagaimana dengan 3p + 5x dan 7z – 3y? Kedua bentuk aljabar tersebut tidak bisa dijumlahkan atau dikurangkan karena memiliki variabel yang berbeda.

Penjumlahan dan pengurangan bentuk aljabar di atas akan berlaku juga pada penjumlahan dan pengurangan bentuk akar. Bagaimana penjumlahan dan pengurangan bentuk aljabar? Untuk memahami hal tersebut silahkan simak contoh soal di bawah ini.
3√2 + 5√2 = (3 + 5)√2         = 8√2
7√3 – 3√3 = (7 – 3)√3 = 4√3

Bagaimana dengan 3√2 + 5√5 dan 7√3 – 3√7? Kedua bentuk akar tersebut tidak bisa dijumlahkan atau dikurangkan karena tidak dapat dijumlahkan karena tidak memenuhi aturan penjumlahan atau pengurangan bentuk aljabar.

Berdasarkan kedua contoh tersebut maka  sifat umum penjumlahan dan pengurangan bentuk akar adalah sebagai berikut.
a√c + b√c = (a + b)√c
dan
a√c – b√c = (a – b)√c
dengan a, b, c adalah bilangan rasional dan c ≥ 0.
Untuk memantapkan pemahaman Anda tentang operasi aljabar bentuk akar yaitu menjumlahkan dan mengurangkan bentuk akar, silahkan simak contoh soal di bawah ini.

Contoh Soal 1
Hitunglah operasi-operasi berikut.
a. 8√3 + 11√3
b. 12√5 + 5√5
c. 6√7 – 2√7
d. 12√6 – 3√6
e. 8√2 + √2 – 5√2

Penyelesaian:
a. 8√3 + 11√3 = (8 + 11)√3 = 19√3
b. 12√5 + 5√5 = (12 + 5)√5 = 17√5
c. 6√7 – 2√7 = (6 – 2)√7 = 4√7
d. 12√6 – 3√6 = (12 – 3)√6 = 9√6
e. 8√2 + √2 – 5√2 = (8 + 1 – 5)√2 = 4√2

Apakah bisa bentuk akar yang tidak dapat dijumlahkan atau dikurangkan karena tidak memenuhi aturan penjumlahan bentuk aljabar dapat diselesaikan dengan oprasi aljabar penjumlahan atau pengurangan?

Ada juga suatu bentuk akar bisa dijumlahkan atau dikurangkan walaupun tidak memenuhi aturan penjumlahan atau pengurangan bentuk aljabar, dengan cara menyederhanakan bentuk akarnya terlebih dahulu, kemudian diselesaikan dengan opearsi aljabar penjumlahan atau pengurangan bentuk akar. Agar lebih paham silahkan simak contoh soal di bawah ini.

Contoh Soal 2
Hitunglah operasi bentuk akar berikut dengan terlebih dahulu menyederhanakan bentuk akarnya.
a. √2 + √32
b. √6 + √54 – √150
c. √32 – √2 + √8
d. √48 – (27 + √12)

Penyelesaian:
a. Sederhanakan terlebih dahulu √32, yakni:
=> √32 = √(16 × 2)
=> √32 = √16×√2
=> √32 = 4√2
maka:
=> √2 + √32 = √2 + 4√2
=> √2 + √32 = (1 + 4)√2
=> √2 + √32 = 5√2

b. Sederhanakan terlebih dahulu √54 dan √150, yakni:
=> √54 = √(9×6)
=> √54 = √9 × √6
=> √54 = 3√6

=> √150 = √(25×6)
=> √150 = √25 × √6
=> √150 = 5√6

maka:
=> √6 + √54 – √150 = √6 + 3√6 – 5√6
=> √6 + √54 – √150 = (1 + 3 – 5)√6
=> √6 + √54 – √150 = –√6

c. Sederhanakan terlebih dahulu √32 dan √8, yakni:
=> √32 = √(16×2)
=> √32 = √16× √2
=> √32 = 4√2

=> √8 = √(4×2)
=> √8 = √4 × √2
=> √8 = 2√2
maka:
=> √32 – √2 + √8 = 4√2 – √2 + 2√2
=> √32 – √2 + √8 = (4 – 1 + 2)√2
=> √32 – √2 + √8 = 5√2

d. Sederhanakan terlebih dahulu √48, √27 dan √12, yakni:
=> √48 = √(16 × 3)
=> √48 = √16 × √3
=> √48 = 4√3

=> √27 = √(9 × 3)
=> √27 = √9 × √3
=> √27 = 3√3

=> √12 = √(4 × 3)
=> √12 = √4 × √3
=> √12 = 2√3

maka:
=> √48 – (27 + √12) = 4√3 – (33 + 2√3)
=> √48 – (27 + √12) = 4√3 – (3 + 2)3
=> √48 – (27 + √12) = 4√3 – 53
=> √48 – (27 + √12) = (4 – 5)3
=> √48 – (27 + √12) = –3

Demikian postingan Mafia Online tentang operasi penjumlahan dan pengurangan bentuk akar. Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan di atas.

Subscribe to receive free email updates:

2 Responses to "Penjumlahan dan Pengurangan Bentuk Akar "

mtoha said...

cara nyederhanakan nya yang memakan waktu lama.. Gimana cara cepat tahu bilangan perkalian penyederhanaannya?

Admin said...

Saya belum menemukan cara menyederhanakan yang lebih cepat. Untuk mengetahui bilangan perkalian penyederhanaannya, bagi saja dengan bilangan prima 2, 3, atau 5. Misalnya penyederhanaan √12 dan √162
√12 = √(2 x 2 x 3)
√12 = 2√3

√162 = √(3 x 3 x 3 x 3 x 2)
√162 = 3 x 3 x √2
√162 = 9√2