Penerapan Teorema Pythagoras pada Bangun Datar dan Ruang


Masih ingatkah Anda dengan pengertian bangun datar? Bangun datar atau sering disebut sebagai bangun dua dimensi merupakan suatu bangun yang hanya memiliki panjang dan lebar serta dibatasi oleh garis lurus atau lengkung (silahkan baca: rumus keliling dan luas bangun datar). Kita mengenal ada delapan jenis bangun datar yakni persegi panjang, persegi, segitiga, jajargenjang, trapesium, belah ketupat, layang-layang dan lingkaran.

Untuk mencari komponen-komponen bangun datar tersebut kadang-kadang kita melibatkan teorema Pythagoras. Di manakah terorema Pythagoras diterapkan dalam memecahkan permasalahan bangun datar? Berikut beberapa penerapan teorema Pythagoras dalam memecahkan kasus bangun datar yakni:
1) mencari diagonal bidang pada persegi panjang jika panjang dan lebarnya diketahui dan mencari diagonal bidang pada persegi jika diketahui sisi persegi tersebut. Untuk penerapan teorema Pythagoras contoh soal tentang persegi dan persegi panjang, silahkan lihat postingan yang berjudul “cara mencari perbandingan sisi segitiga siku
2) mencari diagonal belah ketupat dan layang-layang jika sisi dan salah satu diagonal bidangnya diketahui. Untuk penerapan teorema Pythagoras pada contoh soal tentang bangun datar belah ketupat dan layang-layang silahkan lihat contoh soal di bawah ini.

Contoh Soal 1
Perhatikan gambar belah ketupat ABCD di bawah ini
Jika sisi belah ketupat tersebut 10 cm dan salah satu diagonalnya 16 cm. Hitunglah luas bangun belah ketupat di atas!

Penyelesaian:
Misalkan titik perpotongan diagonal AC dan BD di titik M, maka:
AM = ½ x AC
AM = ½ x 16 cm
AM = 8 cm

Sekarang dengan menggunakan teorema Pythagoras cari panjang BM, yakni:
BM = √(AB2 – AM2)
BM = √(102 – 82)
BM = √(100 – 64)
BM = √36
BM = 6 cm

BD = 2 x BM
BD = 2 x 6 cm
BD = 12 cm

Untuk mencari luas belah ketupat, gunakan rumus luas belah ketupat yakni:
L = ½ x d1 x d2
L = ½ x AC x BD
L = ½ x 16 cm x 12 cm
L = 96 cm2
Jadi, luas bangun belah ketupat ABCD di atas adalah 96 cm2

Contoh Soal 2
Perhatikan gambar layang-layang ABCD di bawah ini
Jika panjang AC = 24 cm, panjang AB = 13 cm dan panjang AD = 20 cm. Hitunglah luas bangun layang-layang di atas!

Penyelesaian:
Misalkan titik perpotongan diagonal AC dan BD di titik N, maka:
AN = ½ x AC
AN = ½ x 24 cm
AN = 12 cm

Sekarang dengan menggunakan teorema Pythagoras cari panjang BN dan DN, yakni:
BN = √(AB2 – AN2)
BN = √(132 – 122)
BN = √(169 – 144)
BN = √25
BN = 5 cm

DN = √(AD2 – AN2)
DN = √(202 – 122)
DN = √(400 – 144)
DN = √256
DN = 16 cm

Panjang diagonal BD yakni:
BD = BN + DN
BD = 5 cm + 16 cm
BD = 21 cm

Untuk mencari luas bangun layang-layang gunakan rumus luas layang-layang yakni:
L = ½ x d1 x d2
L = ½ x AC x BD
L = ½ x 24 cm x 21 cm
L = 252 cm2
Jadi, luas bangun layang-layang ABCD di atas adalah 252 cm2.

3) mencari tinggi pada trapesium atau jajargenjang. Untuk penerapan teorema Pythagoras pada contoh soal tentang jajargenjang dan trapesium silahkan lihat contoh soal di bawah ini.

Contoh Soal 3
Perhatikan bangun datar jajargenjang ABCD di bawah ini.
Jika diketahui panjang AD = 13 cm, CD = 20 cm, dan BE = 15 cm. Hitunglah luas jajargenjang ABCD tersebut.

Penyelesaian:
Cari panjang AE dengan menggunakan sifat-sifat jajargenjang, yakni:
AB = CD
AE + BE = CD
AE = CD – BE
AE = 20 cm – 15 cm
AE = 5 cm

Sekarang cari tinggi jajargenjang tersebut dengan menggunakan teorema Pythagoras yakni:
DE = √(AD2 – AE2)
DE = √(132 – 52)
DE = √(169 – 25)
DE = √144
DE = 12 cm

Luas jajargenjang dapat dicari dengan rumus luas jajar genjang yakni:
L = a x t
L = AB x DE
L = 20 cm x 12 cm
L = 240 cm2
Jadi, luas jajargenjang ABCD tersebut adalah 240 cm2

Contoh Soal 4
Perhatikan bangun datar trapesium sama kaki ABCD di bawah ini.
Jika diketahui panjang AD = 20 cm, CD = 20 cm dan AB = 44 cm. Hitunglah luas trapesium ABCD tersebut.

Penyelesaian:
Karena trapseium sama kaki maka AD = BC, AE = BF, dan EF = CD. Sekarang cari panjang AE, yakni:
AE = AB – EF – BF
AE = 44 cm – 20 cm – AE
2 x AE = 24 cm
AE = 12 cm

Sekarang cari tinggi trapesium dengan menggunakan teorema Pythagoras yakni:
DE = √(AD2 – AE2)
DE = √(202 – 122)
DE = √(400 – 144)
DE = √256
DE = 16 cm

Luas trapseium dapat dicari dengan rumus luas trapesium yakni:
L = ½ x jumlah sisi sejajar x tinggi
L = ½ x (AB + CD) x DE
L = ½ x (44 cm + 20 cm) x 16 cm
L = 512 cm2

4) mencari panjang tali busur suatu lingkaran jika jari-jari atau diameter lingkaran diketahui (materi ini akan di bahas pada bab berikutnya yaitu Bab Lingkaran). Untuk penerapan teorema Pythagoras pada contoh soal tentang lingkaran silahkan lihat contoh soal di bawah ini.

Contoh Soal 5
Perhatikan lingkaran O di bawah ini.
Jika diameter lingkaran 14 cm, hitunglah panjang tali busur AB!

Penyelesaian:
Kita ketahui bahwa diameter lingkaran sama dengan dua kali jari-jari lingakaran atau jari-jari lingkaran sama dengan setengah diameter lingkaran (silahkan baca: unsur-unsur lingkaran), yakni:
r = ½ x d
r = ½ x 14 cm
r = 7 cm

Dengan menggunakan teorema Pythagoras maka panjang tali bususr AB dapat dicari yakni:
AB = √(AO2 + BO2)
AB = √(72 + 72)
AB = √(49 + 49)
AB = √98
AB = 7√2 cm
Jadi, panjang tali busur AB adalah 7√2 cm

Nah itulah beberapa contoh penerapan teorema Pythagoras pada bangun datar. Selain pada bangun datar, teorema Pythagoras juga diterapkan untuk mencari panjang diagonal ruang kubus dan untuk mencari panjang diagonalruang balok. Sekarang perhatikan contoh soal di bawah ini.

Contoh soal 6
Perhatikan gambar kubus ABCD.EFGH di bawah ini.
Jika panjang rusuk kubus 4 cm, hitunglah diagonal ruang kubus tersebut!

Penyelesaian:
Misalkan kita akan mencari panjang diagonal ruang AG. Sebelum itu Anda harus cari panjang diagonal bidang AF terlebih dahulu. Dengan menggunakan teorema Pythagoras, maka panjang AF dan AG yakni:
AF = √(AB2 + BF2)
AF = √(42 + 42)
AF = √(16 + 16)
AF = √32

AG = √(AF2 + FG2)
AG = √((√32)2 + 42)
AG = √(32 + 16)
AG = √48
AG = 4√3 cm
Jadi, diagonal ruang kubus di atas adalah 4√3 cm.

Contoh soal 7
Perhatikan gambar balok ABCD.EFGH di bawah ini.

Jika balok di atas memiliki panjang 12 cm, lebar 4 cm dan tinggi 8 cm. Hitunglah diagonal ruang balok tersebut.

Penyelesaian:
Misalkan kita akan mencari panjang diagonal ruang BH. Sebelum itu Anda harus cari panjang diagonal bidang BE terlebih dahulu. Dengan menggunakan teorema Pythagoras, maka panjang BE dan BH yakni:
BE = √(AB2 + AE2)
BE= √(122 + 82)
BE = √(144 + 64)
BE = √208

BH = √(BE2 + EH2)
BH = √((√208)2 + 42)
BH = √(208 + 16)
BH = √224
BH = 4√14 cm
Jadi, diagonal ruang balok di atas adalah 4√14 cm

Selain penerapan seperti yang dijelaskan di atas, masih ada banyak penerapan teorema Pythagoras yang belum Mafia Online jelaskan. Nah teorema Pythagoras akan banyak sekali Anda terapkan pada waktu Anda duduk di bangku SMA, yaitu pada materi “Bangun Ruang Dimensi Tiga”. Jadi pastikan bahwa diri Anda sudah benar-benar menguasai teorema Pythagoras.

Mohon maaf jika ada kata-kata atau perhitungan yang salah dalam postingan di atas. Jika ada permasalahan mengenai pembahasan di atas silahkan tanyakan di kolom komentar. Salam Mafia.
Baca Selengkapnya ...
Posted by: Luh Gede 2:04 AM

Cara Mencari Perbandingan Sisi Segitiga Siku


Masih ingatkah Anda dengan cara membuktikan teorema Pythagoras dan cara mencari salah satu sisi segitiga siku-siku jika kedua sisi yang lainnya diketahui? Selain bisa digunakan untuk mencari salah satu sisi segitiga siku-siku, teorema Pythagoras bisa digunakan untuk mencari perbandingan sisi-sisi pada segitiga siku-siku pada sudut khusus. Adapun sudut khusus yang dimaksud di sini adalah 30°, 45°, dan 60°. Bagaimana perbandingan sisi-sisi pada segitiga siku-siku pada sudut khusus?

a) Sudut 30° dan 60°
Perhatikan gambar ∆ABC di bawah ini.

Segitiga ABC di atas merupakan segitiga sama sisi dengan panjang sisi 2x cm dan dengan CAD = ABC = ACB = 60°, kemudian dari titik C ditarik garis tegak lurus (90°) dengan garis AB dan berpotongan di titik D. Akibatnya ACB terbagi menjadi dua yakni ACD = BCD = 30° dan garis AD sama dengan garis BD, sehingga garis AD sama dengan setengah garis AB, maka:
AD = AB
AD = ½ AB
AD = ½ . 2x cm
AD = x cm

Dengan menggunakan teorema Pythagoras maka panjang CD dapat di cari yakni:
CD2 = AC2 – AD2
CD2 = (2x)2 – x2
CD2 = 4x2 – x2
CD2 = 3x2
CD = x√3 cm

Dengan demikian, diperoleh perbandingan sisi pada segitiga siku-siku pada sudut 30° dan 60°, yakni:
AD : CD : AC = x : x√3 : 2x
AD : CD : AC = 1 : √3 : 2

Misalkan garis AD kita sebut sisi terpendek, garis CD kita sebut sebagai sisi menengah, dan AC kita sebut sebagai sisi terpanjang, maka secara umum perbandingan segitiga siku-siku dengan sudut 30° dan 60° yakni:
sisi pendek : sisi tengah : sisi panjang = 1 : √3 : 2

Perbandingan sisi-sisi pada segitiga siku-siku pada sudut khusus dapat diterapkan untuk mengerjakan soal tanpa harus mengguanakan teorema Pythagoras lagi. Oke silahkan simak contoh soal di bawah ini.

Contoh Soal 1
Perhatikan gambar persegi panjang PQRS di bawah ini.

Diketahui panjang diagonal PR = 20 cm dan RPS = 60°. Tentukan
a) panjang PS;
b) panjang PQ;
c) luas PQRS;
d) keliling PQRS.

Penyelesaian:
a) panjang PS dapat dicari dengan perbandingan segitiga siku-siku sudut khusus (30° dan 60°), yakni:
sisi pendek : sisi panjang = 1 : 2
PS : PR = 1 : 2
PS : 20 cm = 1 : 2
PS = ½ x 20 cm
PS = 10 cm

b) panjang PQ juga dapat dicari dengan perbandingan segitiga siku-siku sudut khusus (30° dan 60°), yakni:
sisi tengah : sisi panjang = √3 : 2
PQ : PR = √3 : 2
PQ : 20 cm = √3 : 2
PQ = (√3/2) x 20 cm
PQ = 10√3 cm

c) luas PQRS dapat dicari dengan menggunakan rumus luas persegi panjang yakni:
L = p x l
L = PS x PQ
L = 10 cm x 10√3 cm
L = 100√3 cm2

d) keliling PQRS dapat dicari dengan rumus keliling persegi panjang yakni:
K = 2(p + l)
K = 2(PS + PQ)
K = 2(10 cm + 10√3 cm)
K = 20(1 + √3) cm

b) Sudut 45°
Sekarang perhatikan gambar di bawah ini.

Segitiga ABC pada gambar di atas adalah segitiga siku-siku sama kaki, dengan sudut siku-siku di titik B. Di mana panjang AB = BC = 2x cm, ABC = 90° dan BAC = ACB = 45°.

Dengan menggunakan teorema Pythagoras maka panjang AC diperoleh:
AC = √(AB2 + BC2)
AC = √((2x)2 + (2x)2)
AC = √(4x2 + 4x2)
AC = √8x2
AC = 2x√2 cm

Berdasarkan hasil di atas maka diperoleh perbandingan segitiga siku-siku pada sudut 45° yakni:
AB : BC : AC = 2x : 2x : 2x√2
AB : BC : AC = 1 : 1 : √2

Contoh Soal 2
Perhatikan gambar persegi ABCD di bawah ini.

Diketahui panjang diagonal AC = 10 cm dan BAC = 45°. Tentukan
a) panjang AB;
b) luas ABCD;
c) keliling ABCD.

Penyelesaian:
a) panjang AB dapat dicari dengan perbandingan segitiga siku-siku sudut khusus (45°), yakni:
AB : AC = 1 : √2
AB : 10 cm = 1 : √2
AB = (1/√2) x 10 cm
AB = (10/√2) cm
AB = 5√2 cm

b) luas ABCD dapat dicari dengan menggunakan rumus luas persegi yakni:
L = s2
L = AB2
L = (5√2 cm)2
L = 50 cm2

e) keliling PQRS dapat dicari dengan rumus keliling persegi yakni:
K = 4s
K = 4AB
K = 4 . 5√2 cm
K = 20√2 cm

Demikianlah tentang cara mencari perbandingan segitiga siku-siku dengan teorema Pythagoras pada sudut khusus (30°, 45°, dan 60°). Mohon maaf jika ada kata-kata atau perhitungan yang salah dalam postingan di atas. Jika ada permasalahan mengenai pembahasan di atas silahkan tanyakan di kolom komentar. Salam Mafia.
Baca Selengkapnya ...
Posted by: Luh Gede 8:29 PM

Cara Mencari Tripel Pythagoras


Sebelum Anda mencari tripel Pythagoras terlebih dahulu Anda harus paham dengan pengertian tripel Pythagoras. Apa itu tripel Pythagoras? Untuk mencari pengertian tripel Pythagoras perhatikan kelompok bilangan berikut ini.
a) 5, 12, 13
b) 14, 8, 17
c) 8, 6, 10
d) 3, 4, 6

Misalkan kelompok tiga bilangan di atas merupakan panjang sisi-sisi suatu segitiga. Masih ingatkah Anda cara menentukan jenis segitiga dengan teorema Pythagoras? Nah dengan menggunakan teorema Pythagoras maka kita akan bisa tentukan yang mana kumpulan bilangan tersebut yang merupakan segitiga siku-siku.
a). misalkan a = 5, b = 12 dan c = 13,  dengan mengkudaratkan sisi miring dan jumlahkan kaudrat sisi lainnya, maka diperoleh:
c2 = 132
c2 = 169
a2 + b2 = 52 + 122
a2 + b2 = 25 + 144
a2 + b2 = 169
Karena 132 = 52 + 122, maka segitiga ini termasuk segitiga siku-siku.

b). misalkan a = 14, b = 8 dan c = 17,  dengan mengkudaratkan sisi miring dan jumlahkan kaudrat sisi lainnya, maka diperoleh:
c2 = 172
c2 = 289
a2 + b2 = 142 + 82
a2 + b2 = 196 + 64
a2 + b2 = 260
Karena 172 > 82 + 172, maka segitiga ini bukan termasuk segitiga siku-siku.

c. misalkan a = 6, b = 8 dan c = 10,  dengan mengkudaratkan sisi miring dan jumlahkan kaudrat sisi lainnya, maka diperoleh:
c2 = 102
c2 = 100
a2 + b2 = 62 + 82
a2 + b2 = 36 + 64
a2 + b2 = 100
Karena 102 = 62 + 82, maka segitiga ini termasuk segitiga siku-siku.

d. misalkan a = 3, b = 4 dan c = 6,  dengan mengkudaratkan sisi miring dan jumlahkan kaudrat sisi lainnya, maka diperoleh:
c2 = 62
c2 = 36
a2 + b2 = 32 + 42
a2 + b2 = 9 + 16
a2 + b2 = 25
Karena 62 > 32 + 42, maka segitiga ini bukan termasuk segitiga siku-siku.

Dari uraian di atas tampak bahwa kelompok tiga bilangan 5, 12, 13 dan 6, 8, 10 merupakan sisi-sisi segitiga siku-siku, karena memenuhi teorema Pythagoras. Selanjutnya, kelompok tiga bilangan tersebut disebut tripel Pythagoras.

Jadi, dari penjelasan di atas maka dapat ditarik kesimpulan bahwa pengertian tripel Pythagoras adalah kelompok tiga bilangan bulat positif yang memenuhi kuadrat bilangan terbesar sama dengan jumlah kuadrat dua bilangan lainnya. Bagaimana caranya mencari tripel Pythagoras?

Sekarang perhatikan tabel di bawah ini.
Tabel di atas merupakan tabel cara mencari tripel Pythagoras. Dari tabel di atas dapat ditarik kesimpulan untuk mencari tripel Pythagoras dapat dicari dengan rumus:
(a2 – b2), 2ab, (a2 + b2)
dengan a > b dan a, b merupakan bilangan bulat positif.

Contoh Soal
Pada segitiga ABC diketahui AB = 10 cm, BC = 24 cm, dan AC = 26 cm. Tunjukkan bahwa ABC siku-siku dan di titik manakah ABC siku-siku?

Penyelesaian:
Untuk membuktikan apakah ABC siku-siku dapat digunakan teorema Pythagoras, yakni:
AC2 = 262
AC2 = 676
AB2 + BC2 = 102 + 242
AB2 + BC2 = 100 + 576
AB2 + BC2 = 676
Karena AC2 = AB2 + BC2, maka ABC termasuk segitiga siku-siku. Jika digambarkan seperti gambar di bawah ini.
Berdasarkan gambar di atas maka ABC siku-siku di titik B.

Demikianlah postingan Mafia Online tentang cara mencari tripel Pythagoras. Mohon maaf jika ada kata-kata atau perhitungan yang salah dalam postingan di atas. Jika ada permasalahan mengenai pembahasan di atas silahkan tanyakan di kolom komentar. Salam Mafia.
Baca Selengkapnya ...
Posted by: Luh Gede 5:49 PM