Menentukan Resultan Vektor dengan Penguraian Vektor

Postingan tentang menentukan resultan vektor dengan penguraian vektor ini merupakan lanjutan dari postingan sebelumnya tentang bagaimana cara menguraikan sebuah vektor menjadi komponen-komponennya. Kita ketahui bahwa dalam koordinat (x, y) sebuah vektor dapat diuraikan dua vektor komponen yaitu vektor komponen sumbu x dan vektor komponen sumbu y.

Dengan menggunakan metode penguraian vektor maka kita akan dapat menentukan besar dan arah resultan dari beberapa vektor yang jumlahnya lebih dari dua buah vektor. Metode penguraian vektor sering dikenal dengan istilah metode analisis. Bagaiamana cara mencari besar dan arah resultan vektor dengan metode penguraian (metode analisis)?

Perhatikan gambar 1 di bawah ini.
Menentukan Resultan Vektor dengan Penguraian Vektor
Gambar 1

Gambar 1 di atas terdapat tiga buah vektor yaitu vektor A membentuk sudut α1 tehadap sumbu x, vektor B membentuk sudut α2 tehadap sumbu x, dan vektor C membentuk sudut α3 tehadap sumbu x. Jika masing-masing dari ketiga vektor tersebut diuraikan maka akan tampak seperti gambar 2 di bawah ini.
Menentukan Resultan Vektor dengan Metode analisis
Gambar 2

Dengan menguraikan masing-masing vektor maka kita akan dapatkan komponen-komponennya, yakni:
Untuk vektor A, maka vektor komponennya:
Ax = A cos α1
Ay = A sin α1
Untuk vektor B, maka vektor komponennya:
Bx = B cos α2
By = B sin α2
Untuk vektor C, maka vektor komponennya:
Cx = C cos α3
Cy = C sin α3
Dengan menjumlahkan masing-masing komponen berdasarkan sumbunya maka diperoleh jumlah komponen pada sumbu x (Rx) dan pada sumbu y (Ry) yakni:
Rx = Ax + Bx + Cx
Ry = Ay + By + Cy

Untuk mencari besar resultan vektornya dapat menggunakan rumus:
          R2 = Rx2 + Ry2
atau
          R = √(Rx2 + Ry2)
Sedangkan untuk mencari arah vektor resultan terhadap sumbu x positif dapat dihitung dengan persamaan:
          Tan α = Ry/Rx

Untuk memantapkan pemahaman Anda mengenai cara menentukan besar dan arah resultan vektor dengan cara penguraian vektor atau metode analisis, silahkan perhatikan contoh soaldi bawah ini.

Contoh Soal
Empat buah vektor gaya yang memiliki titik pangkal berimpit dengan besar 20 N, 12 N, 10 N, dan 14 N. Keempat vektor tersebut membentuk sudut terhadap sumbu x masing-masing 0°, 60°, 120° dan 240°. Hitunglah besar dan arah resultan keempat vektor tersebut.

Penyelesaian:
Diketahui:
F1 = 20 N, α1 = 0°
F2 = 12 N, α2 = 60°
F3 = 10 N, α1 = 120°
F4 = 14 N, α1 = 240°
Jika digambarkan akan tampak seperti Gambar 3 di bawah ini.
Cara mencari besar dan arah resultan vektor dengan metode analisis
Gambar 3

Dengan menggunakan konsep cara menguraikan vektor maka masing-masing vektora kan diperoleh komponen-komponennya, yakni:
F1x = F1 cos 0° = 20 N . 1 = 20 N
F1y = F1 sin 0° = 20 N . 0 = 0
F2x = F2 cos 60° = 12 N . ½ = 6 N
F2y = F2 sin 60° = 12 N . ½√3  = 6√3 N
F3x = F3 cos 120° = 10 N . – ½ = – 5 N
F3y = F3 sin 120° = 10 N . ½√3 = 5√3 N
F4x = F4 cos 240° = 14 N . – ½ = – 7 N
F4y = F4 sin 240° = 14 N . –½√3 = –7√3 N

Jumlah vektor komponen sumbu x yakni:
FRx = F1x + F2x + F3x + F4x
FRx = 20 N + 6 N + – 5 N + – 7 N
FRx = 14 N

Jumlah vektor komponen sumbu y yakni:
FRy = F1y + F2y + F3y + F4y
FRy = 0 + 6√3 N + 5√3 N + –7√3 N
FRy = 4√3 N

Besar resultan dari keempat vektor tersebut yakni:
FR = √(FRx2 + FRy2)
FR = √(142 + [4√3]2)
FR = √(196 + 48)
FR = √244
FR = 15,6 N

Arah resultan dari keempat vektor tersebut yakni:
Tan α = FRy/FRx
Tan α = 4√3 N/14 N
Tan α = 0,5
α = arc tan 0,5
α = 26,5°

Jadi, besar dan arah resultan keempat vektor tersebut adalah 15,6 N dan 26,5° terhadap sumbu x.


Demikian postingan Mafia Online tentang cara menentukan besar dan arah resultan vektor dengan cara menguraikan vektor (metode analisis) dan juga contoh soalnya. Mohon maaf jika ada kata atau perhitungan yang salah dalam postingan ini. Salam Mafia => Kita pasti bisa.
TOLONG DIBAGIKAN YA :

4 Responses to "Menentukan Resultan Vektor dengan Penguraian Vektor"

  1. α = arc tan 0,5
    cara menghitung pake kalkulator gimana craanya ?
    tekan tombol apa aja min ?

    BalasHapus
    Balasan
    1. Step-1
      Kalkulator ON

      Step-2
      Pastikan mode degree atau simbol D muncul di baris kecil paling atas

      Step-3
      Tekan tombol shift, lalu tekan tan⁻¹

      Step-4
      Masukkan angka 0,5 di dalam tan⁻¹(. . .)

      Step-5
      Tekan enter atau biasanya tanda sama dengan

      Final step
      Hasilnya akan diperoleh 26.5650511771

      Hapus
  2. Yang f3x kok bisa cos? Kan tidak berhimpit sudut

    BalasHapus
    Balasan
    1. Itu sudut yang dibentuk terhadap sumbu x. Jika dilihat dari sumbu y ke atas, f3 akan membentuk sudut 30 drajat. maka f3x = f3 sin 30. Karena f3x arahnya ke kiri yakni ke sumbu x negaif, maka hasilnya menjadi negatif.

      Hapus

Terima kasih sudah membaca blog ini, silahkan tinggalkan komentar dengan sopan dan tidak mengandung unsur SARA atau pornografi serta tidak ada link aktif. Mohon maaf kalau komentarnya dibalas agak lambat. Kolom komentar ini kami moderasi, jadi kalau ada komentar yang tidak sesuai dengan ketentuan tidak akan dipublikasikan.