Masih ingatkah Anda tentang cara menggambar grafik
persamaan garis lurus pada bidang cartesius? Materi tersebut sudah Mafia Online
posting pada postingan sebelumnya dengan judul “Cara Menggambar Grafik Persamaan Garis Lurus pada Bidang Cartesius”.
Kemudian bagaimana cara menggambar grafik persamaan garis lurus jika yang
diketahui hanya sebuah titik (x1, y1) dengan gradien m?
Kita ketahui bahwa pengertian gradien suatu
garis lurus adalah bilangan yang menyatakan kecondongan atau kemiringan suatu
garis yang merupakan perbandingan antara komponen y dan komponen x (silahkan
baca Cara Menentukan Gradien Garis yang Melalui Titik Pusat)
Agar Anda lebih mudah memaham cara menggambar
grafik persamaan garis lurus yang melalui titik (x1, y2) dengan gradien m,
perhatikan contoh soal berikut.
Contoh
Soal 1
Gambarlah persamaan garis pada bidang koordinat
Cartesius yang melalui titik P(1, 0) dan bergradien 5.
Penyelesaian:
Karena gradien adalah perbandingan antara
komponen y dan komponen x, maka m = ∆y/∆x = 5/1. ∆y = 5 artinya ke atas 5
satuan dari titik P(1, 0) kemudian diterukan dengan ∆x = 1 artinya ke kanan 1
satuan dari titik P(1, 0) sehingga diperoleh titik Q(2,5). Dengan menghubungkan
titik P(1, 0) dengan titik Q(2,5) sehingga diperoleh gambar garfik seperti di
bawah ini.
Berdasarkan pemaparan di atas dapat
ditarik kesimpulan bahwa dari titik (x1, y2) dengan gradien ∆y/∆x maka titik
berikutnya yang dilalui garis tersebut adalah ((x1 + ∆x), (y1 + ∆y)). Untuk
memantapkan pemahaman Anda tentang cara menggambar garis yang melalui satu
titik (x1, y1) dengan gradien m, silahkan perhatikan contoh soal di bawah ini.
Contoh
Soal 2
Gambarlah persamaan garis pada bidang koordinat
Cartesius yang melalui titik:
a. A(1, 3) dan bergradien 2;
b. C(7, 1) dan bergradien 1/5
c. D(3, 0) dan bergradien –½
d. E(–2, –3) dan bergradien –1.
Penyelesaian:
a. A(1, 3) dan bergradien 2, maka m = ∆y/∆x = 2/1
artinya ∆y = 2 dan ∆x = 1. Jadi titik berikutnya adalah:
<=>Titik B((xA + ∆x), (yA + ∆y))
<=>Titik B((1 + 1), (3 + 2))
<=>Titik B(2, 5)
Dengan menghubungkan titik A(1, 3) dengan titik B(2,
5) sehingga diperoleh gambar garfik seperti di bawah ini.
b. C(7, 1) dan bergradien 1/5, maka m = ∆y/∆x = 1/5
artinya ∆y = 1 dan ∆x = 5. Jadi titik berikutnya adalah:
<=>Titik D((xC + ∆x), (yC + ∆y))
<=>Titik D((7 + 5), (1 + 1))
<=>Titik D(12, 2)
Dengan menghubungkan titik C(7, 1) dengan titik D(12,
2) sehingga diperoleh gambar garfik seperti di bawah ini.
c. D(3, 0) dan bergradien –½, maka m = ∆y/∆x = –½
artinya ∆y = –1 dan ∆x = 2. Jadi titik berikutnya adalah:
<=>Titik E((xD + ∆x), (yD + ∆y))
<=>Titik E((3 + 2), (0 –1))
<=>Titik E(5, –1)
Dengan menghubungkan titik D(3, 0) dengan titik E(5,
–1) sehingga diperoleh gambar garfik seperti di bawah ini.
d. E(–2, –3) dan bergradien –1, maka m = ∆y/∆x =
–1 artinya ∆y = –1 dan ∆x = 1. Jadi titik berikutnya adalah:
<=>Titik F((xE + ∆x), (yE + ∆y))
<=>Titik F((–2 + 1), (–3 –1))
<=>Titik F(–1, –4)
Dengan menghubungkan titik E(–2, –3) dengan
titik F(–1, –4) sehingga diperoleh gambar garfik seperti di bawah ini.
Sekarang coba lihat contoh soal pada postingan
Mafia Online sebelumnya tentang cara menentukan persamaan garis melalui sebuah titik dan gradien, kemudian bandingkan
semua grafik di atas dengan grafik yang ada pada akhir postingan tersebut.
Demikian postingan Mafia Online tentang cara menggambar
garis yang melalui satu titik (x1, x2) dengan gradien m. Mohon maaf jika ada kata-kata atau hitungan yang salah dalam
postingan di atas. Salam Mafia.
0 Response to "Menggambar Garis yang Melalui Satu Titik dan Gradien"
Posting Komentar
Terima kasih sudah membaca blog ini, silahkan tinggalkan komentar dengan sopan dan tidak mengandung unsur SARA atau pornografi serta tidak ada link aktif. Mohon maaf kalau komentarnya dibalas agak lambat. Kolom komentar ini kami moderasi, jadi kalau ada komentar yang tidak sesuai dengan ketentuan tidak akan dipublikasikan.