Sesuai dengan namanya, sistem persamaan linear tiga variabel terdiri atas tiga variabel. Sistem persamaan linear tiga variabel (SPLTV) merupakan system persamaan yang disusun oleh tiga persamaan linear dengan tiga variabel atau peubah yang sama. Sama seperti SPLDV, sistem persamaan linear tiga variable juga dapat diaplikasikan dalam kehidupan sehari-hari. SPLTV dapat dimanfaatkan untuk menyelesaikan berbagai masalah yang berkaitan dengan model matematika berbentuk SPLTV.
Bentuk umum SPLTV biasanya ditulis
dengan bentuk sebagai berikut:
ax + by + cz = d
ex + fy + gz = h
ix +jy +kz = l
Dari bentuk di atas, x, y dan z
merupakan variable atau peubah yang nilainya belum diketahui. Sedangkan a, b, c,
d, e, f, g, h, I, j, k, dan l merupakan bilangan-bilangan real yang sudah
diketahui nilainya. Nah, penyelesaian sistem persamaan linear tiga variable
artinya menemukan nilai x, y, dan z yang memenuhi ketiga persamaan penyusun
sistem. Dengan kata lain, nilai tersebut harus menyebabkan ketiga persamaan
bernilai benar.
Cara penyelesaian sistem persamaan
linear tiga variabel (SPLTV) hampir sama seperti sistem persamaan linear dua
variabel (SPLDV), hanya saja jumlah variabelnya saja yang berbeda. Sama seperti
SPLDV, pada SPLTV juga dapat diselesaikan dengan beberapa metode seperti
substitusi, metode eliminasi, dan metode campuran (eliminasi dan substitusi).
Nah ada lagi metode penyelesaian yang akan dipelajari pada tingkat lanjut yakni
metode determinan dengan menggunakan matriks.
Nah untuk memantapkan pemahaman kamu
tentang penyelesaian persamaan linear tiga variabel, silahkan simak contoh soal
cerita di bawah ini.
Contoh Soal 1
Ibu Yanti membeli 5 kg telur, 2 kg
daging, dan 1 kg udang dengan harga Rp 305.000,00. Ibu Eka membeli 3 kg telur
dan 1 kg daging dengan harga Rp 131.000,00. Ibu Putu membeli 3 kg daging dan 2
kg udang dengan harga Rp 360.000,00. Jika Ibu Aniza membeli 3 kg telur, 1 kg
daging, dan 2 kg udang, berapah harga yang harus ia bayar?
Penyelesaian:
Misal x = harga telur, y = harga
daging, dan z = harga udang.
Jumlah harga belanjaan ibu Yanti Rp 305.000 sehingga diperoleh persamaan:
5x + 2y + z = 305000
Jumlah harga belanjaan
ibu Eka Rp 131.000 sehingga diperoleh persamaan:
3x + y = 131000
Jumlah harga belanjaan
ibu Putu Rp 360.000 sehingga diperoleh persamaan:
3y + 2z = 360000
Jumlah harga yang harus
dibayar Ibu Aniza dapat ditulis dengan persamaan = 3x + y + 2z
Diperoleh SPLTV yakni:
5x + 2y + z = 305000 . .
. . pers (1)
3x + y = 131000 . . . .
pers (2)
3y + 2z = 360000 . . . .
pers (3)
Adapun metode yang akan
dipilih dalam menyelesaikan SPLTV yakni metode subtitusi.
Langkah I
Ubah persamaan 2 yakni:
3x + y = 131000
y = 131000 – 3x . . .
. pers (4)
Langkah II
Substitusi persamaan 4
ke persamaan 1, maka:
5x + 2y + z = 305000
5x + 2(131000 – 3x) + z
= 305000
5x + 262000 – 6x + z = 305000
– x + z = 43000
z = 43000 + x . . . .
persamaan 5
Langkah III
Substitusi persamaan 5
ke persamaan 3, maka:
3y + 2z = 360000
3y + 2(43000 + x) = 360000
3y + 86000 + 2x = 360000
2x + 3y = 274000 . . . .
pers (6)
Langkah IV
Substitusi persamaan 4
ke persamaan 6, maka:
2x + 3y = 274000
2x + 3(131000 – 3x) =
274000
2x + 393000 – 9x =
274000
– 7x = – 119000
x = – 119000/–7
x = 17000
Langkah V
Substitusi nilai x ke
persamaan 4 dan ke persamaan 5, maka:
y = 131000 – 3x
y = 131000 – 3(17000)
y = 80000
z = 43000 + x
z = 43000 + 17000
z = 60000
Langkah VI
Jumlah harga yang harus
dibayar ibu Aniza yakni:
Ibu Dina = 3x + y + 2z
Ibu Dina = 3(17000) + 80000
+ 2(60000)
Ibu Dina = 51000 + 80000
+ 120000
Ibu Dina = 251000
Jadi, harga yang harus Ibu
Aniza bayar adalah sebesar Rp 251.000,00
Contoh Soal 2
Pada hari Minggu Wayan, Candra, Agus
dan Akbar membeli perlengkapan sekolah di toko buku “Subur”. Wayan membeli 4
buku, 2 bolpoin, dan 3 pensil dengan harga Rp26.000,00. Candra membeli 3 buku,
3 bolpoin, dan 1 pensil dengan harga Rp21.500,00. Agus membeli 3 buku, dan 1
pensil dengan harga Rp12.500,00. Jika Akbar membeli 1 buku, 2 bolpoin dan 2
pensil, berapakah harga yang harus ia bayar?
Penyelesaian:
Misalkan a = buku, b = bolpoin, dan
c = pensil
Persamaan matematis
untuk:
Wayan => 4a + 2b + 3c
= 26000
Candra => 3a + 3b + c
= 21500
Agus => 3a + c =
12500
Akbar => a + 2b + 2c
= ?
Diperoleh SPLTV yakni:
4a + 2b + 3c = 26000 . .
. . pers (1)
3a + 3b + c = 21500 . .
. . pers (2)
3a + c = 12500 . . . .
pers (3)
Adapun metode yang
dipilih dalam menyelesaikan SPLTV ini yakni dengan menggunakan metode
eliminiasi.
Langkah I
Eliminasi variabel b
pada persamaan 1 dan 2 yakni:
4a + 2b + 3c = 26000 x3
3a + 3b + c = 21500 x2
12a + 6b + 9c = 78000
6a + 6b + 2c = 43000
----------------------------- -
6a + 0 + 7c = 35000
=> 6a + 7c = 35000 .
. . pers (4)
Langkah II
Eliminiasi variabel c
pada persamaan 3 dan 4, yakni:
3a + c = 12500 x7
6a + 7c = 35000 x1
21a + 7c = 87500
6a + 7c = 35000
----------------------- -
15a = 52500
a = 3500
Langkah III
Substitusi nilai a ke
persamaan 4, maka:
6a + 7c = 35000
6(3500) + 7c = 35000
21000 + 7c = 35000
7c = 14000
c = 2000
Langkah IV
Substitusi nilai a dan c
ke persamaan 2, maka:
3a + 3b + c = 21500
3(3500) + 3b + 2000 = 21500
10500 + 3b + 2000 = 21500
12500 + 3b = 21500
3b = 9000
b = 3000
Langkah V
Untuk menentukan harga
yang harus Akbar bayar dapat dilakukan dengan memasukan nilai a, b dan c,
yakni:
Harga = a + 2b + 2c
Harga = 3500 + 2(3000) +
2(2000)
Harga = 3500 + 6000 +
4000
Harga = 13500
Jadi harga yang harus
Akbar bayar adalah sebesar Rp 13.500,00
Contoh Soal 3
Diketahui sebuah bilangan tiga
angka. Jumlah angka-angka tersebut 11. Dua kali angka pertama ditambah angka
kedua sama dengan angka ketiga. Angka pertama ditambah angka kedua dikurangi
angka ketiga sama dengan – 1. Tentukan ketiga bilangan tersebut.
Penyelesaian:
Misalkan: x = bilangan
pertama, y = bilangan kedua, z = bilangan ketiga
Persamaan matematis:
a + b + c = 11
2a + b = c => 2a + b –
c = 0
a + b – c = – 1
Diperoleh SPLTV yakni:
a + b + c = 11 . . . .
pers (1)
2a + b – c = 0 . . . .
pers (2)
a + b – c = – 1 . . . .
pers (3)
Langkah I
Eliminasi c dengan
menggunakan persamaan 1 dan 2 maka:
a + b + c = 11
2a + b – c = 0
----------------- +
3a + 2b = 11 . . . . .
pers (4)
Langkah II
Eliminasi b dan c dengan
menggunakan persamaan 2 dan 3, maka:
2a + b – c = 0
a + b – c = – 1
------------------ -
a = 1
Langkah III
Subtitusi nilai a ke
persamaan 4, maka:
3a + 2b = 11
3(1) + 2b = 11
3 + 2b = 11
2b = 8
b = 4
Langkah IV
Subtitusi nilai a dan b
ke persamaan 1, 2 atau 3, maka:
a + b + c = 11
1 + 4 + c = 11
5 + c = 11
c = 6
Jadi ketiga bilangan
tersebut secara berurutan adalah 1, 4 dan 6.
Contoh Soal 4
Eka, Dwi, dan Tri adalah 3
bersaudara. Menurut mereka, jumlah usia mereka adalah 28 tahun. Jumlah usia Eka
yang ditambah 2 tahun dan usia Dwi yang ditambah 3 tahun sama dengan 5 tahun
ditambah tiga kali usia Tri. Dua kali usia Eka dikurangi usia Dwi kemudian ditambah
usia Tri sama dengan 13 tahun. Tentukan urutan usia mereka dari yang paling
muda!
Penyelesaian:
Misal usia Eka = x, Dwi = y, dan Tri
= z
Persamaan matematis:
x + y + z = 28
(x + 2) + (y + 3) = 5 + 3z
=> x + y – 3z = 0
2x – y + z = 13
Diperoleh SPLTV yakni:
x + y + z = 28 . . . .
pers (1)
x + y – 3z = 0 . . . .
pers (2)
2x – y + z = 13 . . . .
pers (3)
Langkah I
Eliminasi x dan y dengan
menggunakan persamaan 1 dan 2 yakni:
x + y + z = 28
x + y – 3z = 0
----------------- -
4z = 28
z = 7
Langkah II
Eliminiasi y dengan
menggunakan persamaan 2 dan 3 yakni:
x + y – 3z = 0
2x – y + z = 13
------------------ +
3x – 2z = 13 . . . .
pers (4)
Langkah III
Substitusi nilai z ke
persamaan 4, maka:
3x – 2z = 13
3x – 2(7) = 13
3x – 14 = 13
3x = 27
x = 9
Langkah IV
Substitusi nilai x dan z
ke persamaan 1, maka:
x + y + z = 28
9 + y + 7 = 28
y + 16 = 28
y = 12
Jadi urutan usia dari
usia yang paling muda yaitu 7 tahun, 9 tahun, dan 12 tahun.
Demikian artikel tentang
soal cerita persamaan linear tiga variabel (SPLTV) dan penyelesaiannya. Apabila
terdapat kesalahan tanda maupun angka dalam perhitungan mohon dimaklumi.
Terimakasih atas kunjungannya dan sampai jumpa di artikel berikutnya.
Mantap
BalasHapus