Beranda · Matematika SMP · Matematika SMA · Fisika SMP · Fisika SMA · Kimia SMP · Kimia SMA ·

Materi dan Contoh Soal Aturan Cosinus Pada Segitiga

Agar lebih mudah menguasai konsep aturan cosinus pada segitiga terlebih dahulu harus paham dengan perbandingan trigonometri pada suatu segitiga siku-siku khususnya definisi sinus dan cosinus suatu sudut. Oke langsung saja ke pembahasan. Silahkan simak gambar di bawah ini.
Aturan Cosinus Pada Segitiga

Dari gambar segitiga sebarang ABC di atas ditarik sebuah garis dari titik C menuju gari AB yang tegak lurus sehingga membentuk garis tinggi pada segitiga ABC. Di mana ÐCAB = α, ÐABC = β,  ÐBCA = θ, AC = b, AB = c dan  BC = a.

Sekarang perhatikan ΔADC, dengan menggunakan definisi sinus maka kita akan dapatkan panjang CD  adalah:
sin α = CD/AC
CD = AC.sin α
CD = b.sin α (persamaan I)

Sedangkan panjang AD dapat dicari dengan menggunakan definisi cosinus yakni:
cos α = AD/AC
AD = AC.cos α
AD = b.cos α (persamaan II)

Sekarang perhatikan ΔBCD, dengan menggunakan  teorema  pythagoras,  dengan mensubtitusikan persamaan I dan II akan diperoleh:
BC2 = BD2 + CD2
BC2 = (AB – AD)2 + CD2
BC2 = AB2 –2AB.AD + AD2 + CD2
BC2 = AB2 –2AB. b.cos α + (b.cos α)2 + (b.sin α)2
BC2 = AB2 –2AB.b.cos α + b2.cos2 α + b2.sin2 α
a2 = c2 – 2bc.cos α + b2.cos2 α + b2.sin2 α
a2 = c2 – 2bc.cos α + b2.(cos2 α + sin2 α)
ingat identitas trigonometri bahwa cos2 α + sin2 α = 1, maka persamaannya menjadi:
a2 = c2 – 2bc.cos α + b2
a2 = b2 + c2 – 2bc.cos α

Dengan cara yang sama kita juga bisa melakukan langkah untuk sudut β dan θ. Jadi dapat disimpulkan bahwa setiap  segitiga  ABC  dengan panjang sisi- sisi berturut-turut adalah a, b dan c satuan panjang dan besar sudut di hadapan sisi-sisi berturut-turut adalah α, β,  dan θ (seperti pada gambar ΔABC di atas) maka berlaku aturan cosinus berikut:
Rumus Aturan Cosinus Pada Segitiga

Untuk memantapkan pemahaman Anda tentang aturan cosinus pada segitiga silahkan simak contoh soal di bawah ini.

Contoh Soal 1
Diketahui  segitiga  ABC,  dengan  panjang  AB  =  5  cm,  BC =  7  cm  dan  sudut B  = 60°, tentukan panjang sisi AC.

Penyelesaian:
Jika digambarkan segitiganya maka akan tampak seperti gambar di bawah ini.
Contoh Soal Aturan Cosinus Pada Segitiga

Dengan menggunakan aturan cosinus maka kita akan dapat mencari sisi-sisi pada segitiga tersebut yakni:
AC2 = AB2 + BC2 – 2AB.BC.cos 60°
AC2 = 42 + 72 – 2.4.7. ½
AC2 = 16 + 49 – 28
AC2 = 37
AC = √37 cm

Contoh Soal 2
Diketahui segitiga ABC, dengan panjang AB = 9 cm, AC = 7 cm, dan BC = 8 cm. Tentukan nilai sin B.

Penyelesaian:
Jika digambarkan segitiganya maka akan tampak seperti gambar di bawah ini.
Contoh Soal Aturan Cosinus Pada Segitiga
Dengan menggunakan aturan cosinus maka kita cari dulu nilai cos β yakni:
AC2 = AB2 + BC2 – 2AB.BC.cos B
72 = 92 + 82 – 2.9.8. cos B
 49 = 81 + 64 – 144.cos B
96 = 144.cos B
cos B = 96/144
cos B = 2/3

cos B = x/r
maka:
r2 = x2 + y2
32 = 22 + y2
y2 = 5
y = √5

sehingga nilai sin B = y/r = √5/3

Cara lain, dengan menggunakan identitas trigonometri bahwa cos2 B + sin2 B = 1 maka:
sin2 B = 1 – cos2 B
sin2 B = 1 – (2/3)2
sin2 B = 1 – 4/9
sin2 B = 9/9 – 4/9
sin2 B = 5/9
sin B = √(5/9)
sin B = √5/3

Soal Tatangan
Sebuah lingkaran yang di dalam terdapat segiempat tali busur seperti gambar di bawah ini.
Contoh Soal Aturan Cosinus Pada Segitiga

Panjang tali busur AB = 1 cm, BC = 3 cm, CD = 4 cm dan AD = 2 cm. Tentukan nilai sin A

2 Responses to "Materi dan Contoh Soal Aturan Cosinus Pada Segitiga"

Terima kasih sudah membaca blog ini, silahkan tinggalkan komentar dengan sopan dan tidak mengandung unsur SARA atau pornografi serta tidak ada link aktif. Mohon maaf kalau komentarnya dibalas agak lambat. Kolom komentar ini kami moderasi, jadi kalau ada komentar yang tidak sesuai dengan ketentuan tidak akan dipublikasikan.