Beranda · Matematika SMP · Matematika SMA · Fisika SMP · Fisika SMA · Kimia SMP · Kimia SMA ·

Tips Cepat Memfaktorkan Bentuk Aljabar

Untuk memfaktorkan bentuk aljabar seperti x2 – 5x + 6 mungkin Anda dengan mudah dapat memfaktorkannya. Bagaimana dengan soal seperti ini 15x2 – 46x + 16? Bingung kan?

Untuk memfaktorkan bentuk aljabar ax2 – bx + c di mana a > 1 Mafia Online akan berikan tips yang boleh dibilang paling mudah dan cepat dibandingkan dengan cara yang lainnya (menggunakan rumus). Oke sekarang perhatikan contoh soal berikut ini.

Faktorkanlah bentuk-bentuk aljabar berikut
1. 2x2 + 7x + 3
2. 12m2 – 8m + 1
3. 2y2 + 5y – 3
4. 3x2 + 16x + 5
5. 10a2 – 43a + 12
6. 4x2 – 7xy – 2y2
7. 2x2 + 5x + 3
8. 12x2 – 34x + 10
9. 6x2 + 5xy – 6y2
10. 3y2 + 8y + 4
11. 3p2 + 7p – 6
12. 8a2 + 2ab – 15b2
13. 5x2 + 13x + 6
14. 8a2 + 10a – 3
15. 1 + 3m – 18m2
16. 3y2 – 8y + 4
17. 6y2 – 5y – 6
18. 15 – 7x – 2x2
19. 8p2 – 14p + 5
20. 5x2 + 23x – 10

Penyelesaian:
1. 2x2 + 7x + 3
Dalam hal ini a = 2, b = 7 dan c = 3. Dua bilangan yang hasil kalinya ac = 2 × 3 = 6 dan jumlahnya 7 adalah 6 dan 1, sehingga
2x2 + 7x + 3
= ½ (2x + 6)(2x + 1)
= ½ × 2 (x + 3)(2x + 1)
= (x + 3)(2x + 1)

2. 12m2 – 8m + 1
Dua bilangan yang hasil kalinya ac = 12 × 1  = 12 dan jumlahnya –8  adalah – 6 dan – 2, sehingga
12m2 – 8m + 1
= 1/12 (12x – 6)( 12x - 2)
= 1/12 × 6(2x – 1) 2(6x - 1)
= 1/12 × 12 (2x – 1)(6x - 1)
= (2x – 1)(6x - 1)

3. 2y2 + 5y – 3
Dua bilangan yang hasil kalinya ac = 2 × - 3 = - 6 dan jumlahnya 5  adalah 6 dan – 1, sehingga
2y2 + 5y – 3
= ½ (2y + 6)(2y - 1)
= ½ × 2 (y + 3)(2y - 1)
= (2y – 1)(y + 3)

4. 3x2 + 16x + 5
Dua bilangan yang hasil kalinya ac = 3 × 5 = 15 dan jumlahnya 16 adalah 15 dan 1, sehingga
3x2 + 16x + 5
= (1/3)(3x + 15)(3x + 1)
= (1/3)× 3(x + 5)(3x + 1)
= (x + 5)(3x + 1)

5. 10a2 – 43a + 12
Dua bilangan yang hasil kalinya ac = 10 × 12 = 120 dan jumlahnya - 43 adalah - 40 dan - 3, sehingga
10a2 – 43a + 12
= (1/10)( 10a – 40)(10a – 3)
= (1/10)× 10 (a – 4)(10a – 3)
= (a – 4)(10a – 3)

6. 4x2 – 7xy – 2y2
Hasil kalinya ac = 4 ×  2 =  8 dan jumlahnya  7 adalah 1 dan  8, sehingga
4x2 – 7xy – 2y2
= (1/4)( 4x  8y)(4x + y)
= (1/4)× 4 (x  2y)(4x + y)
= (x  2y)(4x + y)

7. 2x2 + 5x + 3
Dua bilangan yang hasil kalinya ac = 2 × 3 = 6 dan jumlahnya 5 adalah 3 dan 2, sehingga
2x2 + 5x + 3
= ½ (2x + 2)(2x + 3)
= ½ × 2 (x + 1)(2x + 3)
= (x + 1)(2x + 3)

8. 12x2 – 34x + 10
Dua bilangan yang hasil kalinya ac = 10 × 12 = 120 dan jumlahnya - 43 adalah - 40 dan - 3, sehingga
12x2 – 43x + 10
= (1/12)( 12x – 40)(12x – 3)
= (1/12)× 4 (3x – 10) 3 (4x – 1)
= (1/12)× 12 (3x – 10)(4x – 1)
= (3x – 10)(4x – 1)

9. 6x2 + 5xy – 6y2
Hasil kalinya ac = 6 × - 6 = - 36 dan jumlahnya 5 adalah - 4 dan 9, sehingga
6x2 + 5xy – 6y2
= (1/6)(6x – 4y)(6x + 9y)
= (1/6)× 2 (3x – 2y) 3 (2x + 3y)
= (1/6)× 6 (3x – 2y)(2x + 3y)
= (3x – 2y)(2x + 3y)

10. 3y2 + 8y + 4
Dua bilangan yang hasil kalinya ac = 3 × 4 = 12 dan jumlahnya 8 adalah 6 dan 2, sehingga
3y2 + 8y + 4
= (1/3) (3y + 6)(3y + 2)
= (1/3)×3 × (y + 2)(3y + 2)
= (3y + 2)( y + 2)

11. 3p2 + 7p – 6
Dua bilangan yang hasil kalinya ac = 3 × - 6 = - 18 dan jumlahnya 7 adalah 9 dan - 2, sehingga
3p2 + 7p – 6
= (1/3) (3p + 9)(3p - 2)
= (1/3)×3 × (p + 3)(3p - 2)
= (p + 3)(3p - 2)

12. 8a2 + 2ab – 15b2
Hasil kalinya ac = 8 × - 15 = - 120 dan jumlahnya 5 adalah - 10 dan 12, sehingga
8a2 + 2ab – 15b2
= (1/8)(8a – 10b)(8a + 12b)
= (1/8)× 2 (4a – 5b) 4 (2x + 3y)
= (1/8)× 8 (4a – 5b)(2x + 3y)
= (4a – 5b)(2x + 3y)

13. 5x2 + 13x + 6
Dua bilangan yang hasil kalinya ac = 5 × 6 = 30 dan jumlahnya 13 adalah 10 dan 3, sehingga
5x2 + 13x + 6
= (1/5) (5x + 10)(5x + 3)
= (1/5) × 5 (x + 2)(5x + 3)
= (5x + 3)( x + 2)

14. 8a2 + 10a – 3
Dua bilangan yang hasil kalinya ac = 8 × - 3 = - 24 dan jumlahnya 10 adalah 12 dan - 2, sehingga
8a2 + 10a – 3
= (1/8) (8a + 12)(8a - 2)
= (1/8) 4 (2a + 3) 2 (4a - 1)
= (1/8) 8 (2a + 3)(4a - 1)
= (2a + 3)(4a - 1)

15. 1 + 3m – 18m2
Dua bilangan yang hasil kalinya ac = – 18 × 1 = – 18 dan jumlahnya 3 adalah – 3 dan  6, sehingga
1 + 3m – 18m2
= (1/-18) (-3 – 18m)(6 – 18m)
= (1/-18) - 3(1 + 6m) 6(1 – 3m)
= (1/-18) (- 18)(1 + 6m)(1 – 3m)
= (1 + 6m)(1 – 3m)

16. 3y2 – 8y + 4
Dua bilangan yang hasil kalinya ac = 3 × 4 = 12 dan jumlahnya – 8 adalah – 2 dan  - 6, sehingga
3y2 – 8y + 4
= (1/3) (3y – 2)(3y – 6)
= (1/3) (3y – 2) 3 (y – 2)
= (1/3) 3 (3y – 2)(y – 2)
= (3y – 2)(y – 2)

17. 6y2 – 5y – 6
Dua bilangan yang hasil kalinya ac = 6 × - 6 = - 36 dan jumlahnya – 5 adalah  4 dan  - 9, sehingga
6y2 – 5y – 6
= (1/6) (6y + 4)(6y – 9)
= (1/6) 2(3y + 2) 3 (2y – 3)
= (1/6) 6 (3y + 2)(2y – 3)
= (3y + 2)(2y – 3)

18. 15 – 7x – 2x2
Dua bilangan yang hasil kalinya ac = 15 × - 2 = - 30 dan jumlahnya – 7 adalah  3 dan  - 10, sehingga
15 – 7x – 2x2
= (1/-2) (-2x + 3)(-2x –10)
= (1/-2) (-2x + 3) 2(-x –5)
= (1/-2) (-2x + 3)(-2)(x + 5)
= (-2x + 3)(x + 5)
= (3 – 2x)(x + 5)

19. 8p2 – 14p + 5
Dua bilangan yang hasil kalinya ac = 8 × 5 = 40 dan jumlahnya – 14 adalah  - 4 dan  - 10, sehingga
8p2 – 14p + 5
= (1/8) (8p – 4)(8p –10)
= (1/8) 4 (2p – 1) 2 (4p – 5)
= (1/8) 8 (2p – 1)(4p – 5)
= (2p – 1) 2 (4p – 5)

20. 5x2 + 23x – 10
Dua bilangan yang hasil kalinya ac = 5 × – 10 = - 50 dan jumlahnya 23 adalah  - 2 dan  25, sehingga
5x2 + 23x – 10
= (1/5) (5x + 25)(5x – 2)
= (1/5) 5 (x + 5)(5x – 2)
= (x + 5)(5x – 2)

Jika ada masalah atau kurang mengerti silahkan tanyakan di kolom komentar. Semoga contoh soal tersebut membantu Anda dalam memfaktorkan bentuk aljabar.

4 Responses to "Tips Cepat Memfaktorkan Bentuk Aljabar"

  1. trimakasih sangat membantu mengerjakan pr dengan mudah

    BalasHapus
  2. TERIMA KASIH SOAL DAN PENYELESAIAN SANGAT MEMBATU SAYA, MOHON MAAF MOHON KOREKSI UNTUK PEMBAHASAN NO.6

    BalasHapus

Terima kasih sudah membaca blog ini, silahkan tinggalkan komentar dengan sopan dan tidak mengandung unsur SARA atau pornografi serta tidak ada link aktif. Mohon maaf kalau komentarnya dibalas agak lambat. Kolom komentar ini kami moderasi, jadi kalau ada komentar yang tidak sesuai dengan ketentuan tidak akan dipublikasikan.